
Learning from Multiple Heuristics

Mehdi Samadi
Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

msamadi@cs.ualberta.ca

Ariel Felner
Information Systems Engineering Dept.

Deutsche Telekom Labs
Ben Gurion University

Beer-Sheva, Israel
felner@bgu.ac.il

Jonathan Schaeffer
Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

jonathan@cs.ualberta.ca

Abstract

Heuristic functions for single-agent search applications esti-
mate the cost of the optimal solution. When multiple heuris-
tics exist, taking their maximum is an effective way to com-
bine them. A new technique is introduced for combining mul-
tiple heuristic values. Inspired by the evaluation functions
used in two-player games, the different heuristics in a single-
agent application are treated as features of the problem do-
main. An ANN is used to combine these features into a sin-
gle heuristic value. This idea has been implemented for the
sliding-tile puzzle and the 4-peg Towers of Hanoi, two clas-
sic single-agent search domains. Experimental results show
that this technique can lead to a large reduction in the search
effort at a small cost in the quality of the solution obtained.

Introduction
Heuristic evaluation functions play a key role in the effec-
tiveness of solving single-agent search problems. Algo-
rithms such as A* or IDA* are guided by the cost function
f(n) = g(n)+h(n), whereg(n) is the cost of reaching node
n from the initial state andh(n) estimates the cost of going
from n to the goal. Ifh(n) is admissible (never overesti-
mates the actual cost) then these algorithms are guaranteed
to find an optimal solution if one exists.

Single-agent search heuristic evaluation functions usually
take one of two forms. The regular form is a single heuristic
function that estimates the cost of moving from the current
state to the goal. The second form adds together a num-
ber of smaller heuristic values, each of them estimating the
cost of solving a disjoint subset of the problem. However,
given multiple heuristics (any combination of regular heuris-
tics and sums of disjoint heuristics), maximizing is still the
method of choice to combine them (Korf and Felner 2002).
Thus, for each state, the value of onlyoneheuristic is used
and knowledge from the rest is omitted from consideration.

In two-player games, heuristics are usually treated as fea-
tures, each of them assigning a value to an aspect of a state.
Usually, a linear combination is used to combine these fea-
ture values into a single heuristic assessment (e.g., (Camp-
bell, Hoane, and Hsu 2002)). Knowledge fromall of these
heuristics is considered. The question is whether what works
in two-player games can be effective for one-player (single-
agent) applications.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

There are differences between the one-player and two-
player cases. In the two-player case, the features are de-
signed to be as much as possible independent of each other.
Hence a linear combination is fast and effective. The heuris-
tic value obtained can be an over- or under- assessment;
close is good enough. In contrast, for single-agent applica-
tions different heuristics are measuring the same thing (dis-
tance to the goal). Ideally the value would be admissible and
as close as possible to the optimal value. Thus, the heuristics
have a high correlation with each other and a linear combi-
nation of different heuristics won’t be effective.

This paper treats single-agent search heuristics as features
of the problem and, as in the two-player example, combines
them to produce a single assessment. The heuristics are
combined using an artificial neural network (ANN), since
this better captures the high degree of overlap that can ex-
ist. In a sense, the ANN tries to approximate the optimal
value by discovering the mutual influence and correlations
between multiple heuristics.

Thek different heuristics are treated ask features of the
domain. The optimal solution cost is the target function. In
a preprocessing phase, an ANN is built that learns a function
to predict the solution cost given thek heuristics. For each
state in a training set, itsk heuristic values are fed into the
ANN coupled with its pre-computed optimal solution. The
resulting ANN is then used to supply the heuristic value for
new instances of the problem domain. During a search (e.g.
with IDA*), for each nodes in the search tree the differentk
heuristics are computed and then used as inputs to the ANN.
The output of the ANN (which is a prediction of the optimal
solution) is used ash(s) in the search algorithm. This ANN
is similar to a pattern database (PDB) in the sense that it is
built in a pre-calculation phase and is being consulted dur-
ing the search to extract a heuristic value (but is much more
space efficient than a PDB; all you need is a few hundred
bytes to store an ANN). The contributions of this paper are:
1: A learned heuristic (with ANN in our case) evaluation
function for single-agent search applications that combines
multiple overlapping heuristics.
2: The ANN heuristic cannot guarantee admissibility. An
effective method is introduced for adjusting the learning to
increase the probability of producing an optimal solution.
3: A new idea is introduced, training using a relaxed version
of the problem domain, that allows the ANN approach to be

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

357

effective for large domains where it is impractical to build a
large training set.
4: Experiments on the sliding-tile puzzles and the 4-peg
Towers of Hanoi demonstrate high-quality solutions (most
are optimal) with a major improvement in execution speed.
A comparison with weighted A* (WA*), a popular non-
admissible heuristic modification to A*, shows the ANN can
achieve better solutions with less effort.

This work introduces a new inadmissible heuristic that
produces high quality solutions (most often optimal) with
greatly reduced search effort. It does not depend on the
search algorithm. Thus, for each domain in this paper we
use the most appropriate search algorithm, including IDA*,
recursive best-first search (RBFS) (Korf 1993) and frontier
A* (FA*) (Korf et al. 2005). The AI literature concentrates
on discovering optimal single-agent-search solutions. In re-
ality, optimality is not needed for many real-world appli-
cations. Examples of these domains include pathfinding in
computer games (Sturtevant and Buro 2005), robotic navi-
gation (Likhachev, Gordon, and Thrun 2003), and planning
(IPC 2008). In particular, the planning community recog-
nizes that many important planning applications are so chal-
lenging that obtaining an optimal solution is not practical.
Most planners strive for a solution—any solution—with so-
lution quality being a secondary consideration.

Application Domains
The sliding-tile puzzle consists of a square frame containing
a set of numbered square tiles, and an empty position called
the blank. The legal operators are to slide any tile that is hor-
izontally or vertically adjacent to the blank into the blank po-
sition. State-of-the-art heuristics allow sub-second times for
solving arbitrary instances of the 15-puzzle (4×4), however
the 24-puzzle (5 × 5) remains computationally challenging.

The 4-peg Towers of Hanoi (TOH4) is an extension of
the well-known 3-peg problem (Hinz 1997). It consists of
4 pegs andn discs of differing sizes. The task is to transfer
all the discs from the initial peg to a goal peg. Only the top
disc on any peg can be moved, and a larger disc can never
be placed on top of a smaller disc. Unlike the 3-peg version,
where a simple recursive algorithm exists, systematic search
is currently the only method guaranteed to find optimal so-
lutions for problems with 4 or more of discs.

Related Work
Learning single-agent-search heuristics from a given set of
training data has been explored by others. (Ernandes and
Gori 2004) uses a multi-layered ANN for learning heuris-
tics in the 15-puzzle. Given a training set of states together
with their optimal solution, they built a learning system that
predicts the length of the optimal solution for an arbitrary
state. Their features were the puzzle tiles, and the values
of the features were the locations of the tiles. They biased
their predicted values towards admissibility but their success
was limited—optimal solutions were obtained in only50%
of the cases. The average time to solve a problem was faster
than using the admissible Manhattan Distance heuristic by a
factor of 500. Unfortunately, they did not use state-of-the-
art heuristics (which can improve the search by many orders

1098

754

321

12 13 15

11

14

6

10 11

6

98

754

321

12 13 14 15

(a) (b)

Figure 1: The 7-8 PDBs vs. 8-8 PDBs.

of magnitude) nor did they compare their approach to other
non-admissible approaches.

(Hou, Zhang, and Zhou 2002) use statistical learning tech-
niques to predict the optimal solution for the (trivial) 8-
puzzle (3 × 3). Again, the location of the tiles are used as
the input to the system and the optimal solution length is the
output. For an arbitrary instance of the puzzle, their initial
results wereworse than using Manhattan Distance. They
modified their learning system to reduce the mean-squared
error and obtain a more accurate heuristic function. They did
not try biasing their predicted values towards admissibility.

The above efforts attempt to learn using primitive features
of the application domain (tile locations and values). This
can be misleading. Consider the4×4 puzzle with all tiles in
their goal locations, except that tiles 1, 2 and 3 are rotated to
locations 2, 3 and 1. Here the values for the different features
(tile locations) are similar to that of the goal state, with only
three of the fifteen tiles out of place. Thus, this state seems to
be very close to the goal (h(s) is small). The small deviation
(three swapped tiles) is deceptive to the learning algorithm
since the solution length is large (18 in this case).

The work presented in this paper usesheuristic valuesas
features of a state, not just the description of the states.

Learning From Heuristics
When maximizing over multiple heuristics, only one heuris-
tic (the maximum) is taken and the knowledge contained in
the other heuristics is ignored. Additive heuristics have the
advantage that information from several heuristics are being
considered, but are only admissible if they are completely
disjoint (Korf and Felner 2002). For example, Figure 1(a)
shows the state-of-the-art 7-8 partitioning of the tiles into
two disjoint pattern databases (PDBs); adding preserves ad-
missibility. In Figure 1(b) there are two groups of 8 tiles
but tile 10 belongs to both groups. In this case adding the
two PDB values loses admissibility because the moves of
the overlapping tile will be counted twice. When overlap-
ping features exist (tiles in our case) the individual heuris-
tics can be more informed. However, adding them might
significantly overestimate the optimal cost.

Our solution to this is to combine knowledge (even over-
lapping knowledge) fromall of the available heuristics.
Each heuristics is treated as one characteristic (or feature)
of the problem state that has some internal wisdom about
the optimal solution. The role of the learning technique is to
discover the relative influence of each of the heuristics and
their correlations to each other. A non-linear function (as
might be discovered by, for example, an ANN) will com-
pensate for inter-dependence between heuristics.

The basic algorithm that is used is as follows:

358

1: Identify a set ofk heuristics that can be used to
approximate the solution cost for a given domain state
(h1, h2, . . . , hk). For each states, define theheuristic vector
asH(s) = {h1(s), h2(s), . . . , hk(s)}. Any set of heuristics
can be used, with no regard for admissibility. They can be
a function of any part of the state—the entire state or just
a small subset. In this paper, a variety of admissible PDB
heuristics are used, allowing for a fair comparison against
the current best admissible implementations for our two ex-
perimental domains.
2: Build a training set. A set of problem instancesS is used
as the training set. For eachs ∈ S, the heuristic vector
H(s) is calculated and then a search is conducted (e.g., with
the best existing heuristic) to find the optimal solution cost,
opt(s). This is done in a preprocessing phase.
3: A learning algorithm (an ANN in this case) is fed with
the training set values for eachH(s) andopt(s) and learns
a target function that will predictopt(s).
4: The learned evaluation function is then used to generate
h(s) for a search algorithm such as A*, IDA*, FA* or RBFS.
When a states is reached in the search, the heuristic vector
H(s) is calculated and fed into the ANN. The ANN’s output
value is used ash(s).

Selecting the training set
The training set should reflect characteristics of the search
space. A representative data set would include problem in-
stances with a variety of solution costs. For the sliding-tile
puzzles, for example, selecting random states will not be ef-
fective as it will tend to generate instances with large dis-
tances to the goal. Instead, the training data is generated by
random walks backwards from the goal state (eliminating
internal loops) to ensure that the data set includes a variety
of solution costs (small and large).

ANN
The ANN used in this research is a connected feed forward
neural network (Mitchell 1999). The hidden-layer neurons
use the hyperbolic tangent activation function and the back
propagation algorithm is used to train the neural network.
Genetic algorithm were used in experiments to tune neural
networks parameters.

Note that after the training phase, the ANN remains sta-
tic. This does not have to be so. The ideas used by (Tesauro
1995) in his famous backgammon program are applicable
here. One could use temporal differences to update the
neural net after each problem solved, allowing the learning
to be continuous. This is the subject of future work.

Biasing the ANN towards admissibility
Traditionally, the training phase is stopped when themean
square error(MSE) of the training data is below a prede-
fined small threshold. It is defined as:

MSE = Σt∈T (E(t)2)/|T |,
whereT is the training set,E(t) = φ(t) − opt(t), opt is the
target function, andφ is the learned function.

E(t)2 is symmetric, so overestimation and underestima-
tion have the same cost. Using this function with an ANN

 25

 50

 75

-4 -2 0 2 4

O
u
t
p
u
t

v
a
l
u
e

Input value

Modified error
Simple error

Figure 2: An example of simple and modified error function.

results in a heuristic that tries to be close to the optimal value
without discriminating between being under (good) or over
(undesirable). The error function can be modified to pe-
nalize positive values ofE(t) (overestimation), biasing the
ANN towards producing admissible values. Define a new
error function,E′(t), as:

E′(t) = (a + 1
1+exp(−bE(t)))E(t)

and use this instead ofE(t) in the MSE calculations.E(t)
andE′(t) are compared in Figure 2. The new function is
asymmetric; positive values ofE(t) (x axis) lead to a larger
penalty (y axis) than for negative values. The parametersa
andb determine the slope of the left side (E < 0) and the
right side (E > 0), respectively. The new ANN is called
penalty-enhanced ANN (PE-ANN) and it reduces the num-
ber of overestimating instances by a factor of roughly4.

Experimental Results: 15-puzzle
Table 1 presents results for the 15-puzzle. The columns are:
the size ofH(s), the heuristics used, the average heuristic
value, the number of cases (out of 1,000) where the initial
state heuristic was overestimated, the average cost of the
solutions, the number of nodes generated, and the average
running time (in seconds). The ANN used a training set of
10,000 instances. RBFS was used to solve the set of 1,000
problem instances from (Korf and Felner 2002). RBFS is a
linear-space algorithm which expands nodes in a best-first
order, even if the cost function is not monotonic—as is true
for our applications. All experiments were performed on a
AMD Athlon PC (2.2 GHz) with 2 GB of memory.

Line 1 presents the result of using IDA* with the heuristic
of taking the maximum of the 7-8 disjoint PDBs and their
reflection (Korf and Felner 2002). Line 2 uses the same
heuristic but with the RBFS algorithm (slightly larger trees
with more algorithm overhead). The next three lines show
the results of using different heuristic vectors with the ANN.
Line 3 shows the results of the ANN that combinesk = 4
heuristics: the 7-tile PDB, the 8-tile PDB, and their reflec-
tions. Line 4 uses an ANN enhanced with a fifth feature,
Manhattan Distance (MD). Compared to line 1, this version
yields a 16-fold reduction in tree size, at the cost of less than
4% degradation in solution quality. Line 5 shows the results
when 256 different disjoint 5-5-5 PDB partitions were used
(k = 3 × 356 = 768). With so many features to learn, the
poor performance here (compared to line 4) is probably due

359

k Heuristic Avg H h ↑ Cost Nodes Time
Optimal benchmark results

N/A 7-8 (IDA*) 45.63 0 52.52 36,710 0.019
N/A 7-8 (RBFS) 45.63 0 52.52 38,552 0.032

ANN
4 7-8 56.52 524 55.55 2,915 0.002
5 7-8 + MD 54.72 482 54.26 2,241 0.001

768 5-5-5 60.08 592 58.84 3,482 1.215
PE-ANN

4 7-8 50.82 94 52.72 14,852 0.014
5 7-8 + MD 50.56 78 52.61 16,654 0.021

Weighted 7-8 PDB
N/A W=1.05 - - 52.56 27,486 0.028
N/A W=1.07 - - 52.64 21,762 0.021
N/A W=1.10 - - 52.82 13,826 0.013

Table 1: Results for the 15-puzzle.

to insufficient training.
The next two lines (6 and 7) show the results for the

penalty-enhanced ANN. Training with the penalty term sig-
nificantly improved the solution quality—it is now within
0.1% of optimal—at the cost of significantly larger searches
(but still a factor of two less than the benchmark).

Weighted A* (WA*) uses the cost functionf(n) = g(n)+
w ∗ h(n) whereW ≥ 1 (Pohl 1973). ForW > 1 WA*
is inadmissible, but typically a solution is discovered much
faster. We compared the ANN heuristic to weighted heuris-
tics using RBFS. The last lines of Table 1 show the results of
the weighted PDB (WPDB) heuristic for different values of
W . The PE-ANN results are comparable to that of weighted
RBFS. PE-ANN produces slightly better solution costs but
none of the results (lines 6-10) dominates the others on both
the tree size and execution time dimensions.

Since the 7-8 PDB heuristic is very accurate and the
search tree size using this heuristic is rather small, there is
only little room for improvement. In the next sections we
present the results on larger domains.

4-Peg Tower of Hanoi (16 Discs)
A 14-disc PDB is used for TOH4 (16 discs). There are 120
ways to choose 14 discs out of 16;k = 120 for our experi-
ments.1 The training set had10, 000 entries. The optimal so-
lution for each instance was found using Frontier A* (FA*)
(Korf et al. 2005), a best-first algorithm that does not need
to store the open list. FA* is commonly used to solve TOH4
(Felner, Korf, and Hanan 2004).

Table 2 shows results for the 16-disc TOH4 on 100 ran-
dom initial states. Line 1 presents results of an optimal
solver which includes the 14-2 PDB heuristic, maximized
over all 120 partitionings. The next lines show the ANN and
PE-ANN results using the same 120 partitionings. Adding
the penalty term method reduced the difference between
the solution cost obtained to the optimal solution cost from
0.12% to 0.05%. The price was a 2-fold increase in the num-
ber of nodes searched. When compared to the optimal solu-

1A single 14-disc PDB provides all 120 options because only
the relative size of the discs matter, not their absolute size.

Heuristic Cost Nodes Time
100 random test cases

max(120) 145.74 9,037,369 21.17
ANN(120) 145.92 78,246 0.34
PE-ANN(120) 145.82 184,182 0.61

The standard initial state
max(120) 161 13,578,169 31.08
PE-ANN(120) 161 49,956 0.18

Table 2: Results for TOH4 (16 discs).

W Cost Nodes Time
100 random test cases

1.1 145.94 5,993,461 14.11
1.2 146.56 4,072,095 9.82
1.3 146.18 2,060,251 4.92
1.4 147.47 1,455,607 3.82

standard initial state
1.1 161 8,529,224 19.92
1.2 162 6,149,350 13.48
1.3 161 2,618,027 6.19
1.4 163 2,387,701 5.95

Table 3: WFA* results for TOH4 (16 discs).

tion of line 1, the ANN gets a 115-fold reduction in search-
tree size (49-fold for PE-ANN) with only a small (less than
1%) degradation in solution quality.

The last two rows give results for the standard initial state
where all the discs are in the initial peg. Here, the ANN finds
the optimal solution with an impressive 271-fold reduction
in tree size (172-fold reduction in execution time).

Table 3 shows results for Weighted FA* on on these
cases. Compared to the ANN results of Table 2, WFA*
finds slightly worse quality solutions, but with a large loss
in performance (18- to 76-fold depending onW) for the 100
random instances. PE-ANN has even better solution qual-
ity with a 7- to 32-fold performance gain over WFA*. PE-
ANN also outperforms WFA* on the standard initial state
with a 52-174-fold reduction in nodes and a 34-110-fold re-
duction in time (for the two admissible cases ofW = 1.1
andW = 1.3).

Solving Larger Problems
An assumption that has been made thus far is that a large set
of problem instances, coupled with their optimal solution
costs, exist or is easily created. Generating large training
sets is possible for small problems, such as the 15-puzzle
and the 16-disc TOH4 problem, where optimal solutions to
random instances can be found very fast. However, opti-
mally solving larger problems becomes problematic due to
time constraints. It takes two days to optimally solve a typ-
ical 24-puzzle problem using the best existing techniques.
Solving 1,000 instances would take many CPU years.

To address this issue, the ANN can be trained using a re-
laxed version of the problem domain. Assume thatP is the
full problem. First, abstractP into a relaxed version of the
problem,P ′. Second, optimally solve training set instances
of P ′. Third, build an ANN forP ′ using the above methods.
Finally, use this ANN as a lower bound for the full problem
P . The advantage of this new method over ordinary PDBs

360

A
B

C 1

A

C

CA

1

2
2

(a) (b)

Figure 3: The 11-11-2 partitioning of the 24-puzzle.

Heuristic Cost Nodes Time
6-6-6-6 100.78 360,892,479,670 156,007

PE-ANN
11-11-2 101.41 118,465,980 111

weighted PDB
6-6-6-6 W=1.1 101.66 8,920,346,297 7,084
6-6-6-6 W=1.2 103.58 133,032,445 107
6-6-6-6 W=1.3 106.58 10,554,813 9
6-6-6-6 W=1.4 110.30 1,400,431 1

weighted PE-ANN
11-11-2 W=1.1 102.92 7,254,440 8
11-11-2 W=1.2 104.48 582,466 0.7

Table 4: Results for the 24-puzzle.

is that much larger relaxed versions can be used.
There is an important consideration in determining an ef-

fective relaxation abstraction for a problem. The more re-
laxation done to the problem, the easier the relaxed prob-
lem will be to solve (important for building a large training
set). However, the more relaxed the problem, the less likely
that solutions to the relaxed problem will be effective for the
original problem. Clearly there is a tradeoff here.

24-puzzle
Figure 3(a) shows the 11-11-2 disjoint partitioning of the
24-puzzle, labeledA, B, andC, which was used in our re-
laxations. Building a PDB for an 11-tile subproblem is im-
practical as there are roughly1016 different combinations.
Instead, the 11-tile subproblemA is relaxed into disjoint 5-
tile (A1) and 6-tile (A2) PDBs (and, hence, are additive), as
shown in Figure 3(b). Similarly, theC1 andC2 PDBs were
built for subproblemC. For each of the 11-tile subproblems,
a PE-ANN was built each with a heuristic vector ofk = 4
features (two sets of a 5-6 partitioning , one shown in the
figure and another one).

Table 4 shows the results for the 24-puzzle averaged over
the same 50 instances used by (Korf and Felner 2002). Line
1 reports results for IDA* and the 6-6-6-6 additive PDB
heuristic (including their reflections about the main diago-
nal) used in (Korf and Felner 2002). RBFS is used in the
remaining lines. Line 2 uses our 11-11-2 PE-ANN. The re-
sults show the PE-ANN achieved a dramatic improvement
by a factor of over 3,000 in the tree size and run time. This
comes at the cost of sacrificing 0.6% in the solution quality.

The next four rows show results for various values ofW
using the 6-6-6-6 PDB heuristic. WPDB can find poorer
quality solutions than the ordinary 6-6-6-6 PDB, but with
less computational effort. The PE-ANN produces a better
solution quality (by less than 0.3%) with a 75-fold in the

 0.1

 1

 10

 100

 1000

 10000

 102 104 106 108 110

Solution cost

N
o
d
es

 (
in

 M
il

li
o
n
s-

lo
g
 s

ca
le

)

Weighted PDB
Weighted ANN

Figure 4: Comparing ANN and WPDB search-tree sizes.

search effort. Since WA* is an effective algorithm, why not
try weighting the ANN heuristic? Table 4 also shows re-
sults using a weighted ANN heuristic. Introducing a weight-
ing factor degrades the solution quality by a small amount.
In return, impressive performance gains are seen. Using a
weighted PE-ANN withW = 1.2, the program builds trees
that are almost one million times smaller than the optimal
solver while increasing solution cost by less than 4%. This
version also handily beats our best WPDB implementation,
both in tree size and in execution time.

Figure 4 compares the search-tree size as a function of so-
lution quality for WANN and WPDB (in log scale). Clearly
the ANN curve is below the WPDB curve meaning that bet-
ter solutions are obtained for a given tree size or, conversely,
less search is required for comparable quality solutions.

4-Peg Towers of Hanoi (17 and 18 Discs)
The relaxed ANN was also used for larger versions of
TOH4. To solve the N-disc problem, an ANN for the M-
disc problem,M < N , was used. The output of the M-disc
problem is then used as a heuristic for the N-disc problem.
Instances of the 17- and 18-disc TOH4 problem were solved
by building the same 16-disc ANN described above for the
largest 16 discs. The final heuristic for the 17- and 18-disc
problems was the sum of the output of the 16-disc ANN and
another PDB for the remaining smallest (1 or 2) discs.

Heuristic Cost Nodes Sec
17 discs

PDB (optimal) 184.2 > 400,000,000 > 950
WPDB (W=1.2) 185.1 34,444,992 81
WPDB (W=1.4) 185.7 10,404,654 24
WPDB (W=1.6) 189.2 5,568,465 14

ANN 184.4 14,736,538 45
WANN (W=1.1) 184.7 1,996,043 7

18 discs
PDB (optimal) 217.1 > 400,000,000 > 950

WPDB (W=1.3) 219.4 332,030,484 762
WPDB (W=1.4) 220.6 183,839,127 424
WPDB (W=1.5) 221.1 87,492,338 203

ANN 217.2 261,449,786 725
WANN (W=1.1) 217.5 29,395,003 84

Table 5: Results on 10 random instances of TOH4.

Table 5 shows the results of solving 10 random instances
of TOH4 with 17 and 18 discs. Non-trivial instances of
these puzzles cannot be solved even when using 120 reflec-

361

 0

 50

 100

 150

 200

 250

 300

 350

 400

 216 218 220 222 224 226 228 230 232

Solution cost

N
o
d
e
s

(
i
n

M
i
l
l
i
o
n
s
)

Weighted PDB
Weighted ANN

Figure 5: WPDB and WANN tree sizes for TOH4 (18 discs).

tions of our 14-disc PDBs. The memory is exhausted once
400,000,000 nodes are generated (FA* stores the frontier in
memory). Thus, to obtain the optimal solutions reported in
the table, we used sophisticated PDB compression methods
(Felner et al. 2007) on a larger 16-1 PDB and a 16-2 PDB
for the 17- and 18-disc problems.

These problems were solved with WFA*, using the re-
laxed 16-disc ANN just described and weighting this ANN
(WANN). The table shows that WANN significantly outper-
forms WPDB. For example, WANN finds a solution that is
within 0.1% of optimal while being at least 200 times faster
(than the 400,000,000 bound). In contrast, WPDB expends
more effort to find lesser-quality solutions. Similar results
were obtained for the 18-disc problem.

Figure 5 compares the number of generated nodes as a
function of the solution cost returned by WPDB and WANN
for the 18-disc problem. Clearly, the WANN curve shows
better performance than WPDB. Comparing identical qual-
ity (cost=219 for example), one sees that WPDB is many
orders of magnitude slower. Comparing equal search effort
(nodes=20 million, for example), WPDB has almost a 6%
degradation in the solution cost.

All experiments used a 14-disc PDB and did not exploit
the symmetric property of TOH. Our WANN can find close
to optimal solution for the initial instance of up to the 30-
disc TOH using only a 15-disc PDB. (Korf and Felner 2007)
solved the same problem using a PDB of size 15, while ex-
ploiting the symmetric property of the problem (as well as
using numerous other enhancements). The ANN solution
was obtained much faster, used considerably less storage,
but not guaranteed to be optimal in general.

Summary and Conclusions
This paper presents an improved heuristic for single-agent
search for application domains that require high-quality so-
lutions. By combining multiple heuristic values using an
ANN, the resultingh(s) value allows a search algorithm
(such as IDA*, RBFS, and FA*) to quickly solve a prob-
lem with an optimal or near optimal solution. This property
is particularly important for real-time domains, where the
luxury of long search times is not practical.

WA* is a simple algorithm—essentially changing one line
of code in A* (or FA* and RBFS). Building an ANN eval-
uation function is more work, but given that there are stan-
dard packages for ANNs, the implementation overhead is
still relatively small. In return for this additional develop-
ment effort, our results for two application domains show

smaller search trees and faster execution time over WA*
(in some cases, several orders of magnitude). These results
were demonstrated using the sliding-tile puzzle and the Tow-
ers of Hanoi (additional results, not reported here, were ob-
tained for the Top Spin puzzle).

The ideas presented in this paper can be applied to two-
player adversarial search. Instead of using a single eval-
uation function in a game-playing program, one can com-
bine evaluation functions and/or features from multiple pro-
grams. Given the proliferation of multi-core processors and
the notorious poor parallel scalability ofαβ search, using
additional resources to improve the quality of the evaluation
function looks like a promising approach. Initial results for
chess endgames are very encouraging.

Acknowledgments
The first author would like to thank Zohreh Azimifar and
Maryam Siabani for their valuable discussions and sugges-
tions. This research was supported by the Israel Science
Foundation (ISF) under grant #728/06 to Ariel Felner and
by iCORE.

References
Campbell, M.; Hoane, J.; and Hsu, F. 2002. Deep Blue.Artificial
Intelligence134(1-2):57–83.
Ernandes, M., and Gori, M. 2004. Likely-admissible and sub-
symbolic heuristics. InECAI, 613–617.
Felner, A.; Korf, R.; Meshulam, R.; and Holte, R. 2007. Com-
pressed pattern databases.JAIR30:213–247.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pattern
database heuristics.JAIR22:279–318.
Hinz, A. M. 1997. The tower of Hanoi. InAlgebras and Combi-
natorics: ICAC’97, 277–289.
Hou, G.; Zhang, J.; and Zhou, J. 2002. Mixture of experts of
ANN and KNN on the problem of puzzle 8. Technical report,
Computing Science Department University of Alberta.
IPC. 2008. International planning competition.http://ipc.
informatik.uni-freiburg.de.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database heuris-
tics. Artificial Intelligence134:9–22.
Korf, R. E., and Felner, A. 2007. Recent progress in heuristic
search: A case study of the four-peg towers of hanoi problem. In
IJCAI, 2324–2329.
Korf, R. E.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005. Fron-
tier search.JACM52(5):715–748.
Korf, R. E. 1993. Linear-space best-first search.Artificial Intelli-
gence62(1):41–78.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. ARA*: Any-
time A* with provable bounds on sub-optimality. InNIPS.
Mitchell, T. M. 1999. Machine learning and data mining.Com-
munications of the ACM42(11):30–36.
Pohl, I. 1973. The avoidance of (relative) catastrophe, heuris-
tic competence, genuine dynamic weighting and computational
issues in heuristic problem solving. InIJCAI-73, 12–17.
Sturtevant, N. R., and Buro, M. 2005. Partial pathfinding using
map abstraction and refinement. InAAAI, 1392–1397.
Tesauro, G. 1995. Temporal difference learning and td-gammon.
Commun. ACM38(3):58–68.

362

